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Many situations of practical importance both in fluid mechanics and elsewhere 
are governed by perturbed forms of conservation laws. Generally the perturba- 
tions are in the nature of positive dissipation terms in the sense that any initial 
disturbance from a uniform state ultimately decays to that state. Diverse ex- 
amples of these are discussed briefly. 

A situation in which the perturbation results naturally in a negative dissipation 
term, in the sense that initial disturbances grow, although not necessarily in- 
definitely, arises in what has been accepted for a model for the Gunn (1963) 
effect and other so-called bulk negative resistance effects in semiconductors. 
The Gunn effect, which is of immense importance in electron-device technology 
(comparable with transistors), is the appearance of coherent microwave current 
oscillations in the crystals of a suitable semiconductor, in particular Gallium 
Arsenide, when they are subjected to a large electric field generally of the order 
of several kilovolts per centimetre. It now seems to be accepted that the effect 
is a consequence of the negative resistance (that is the electron drift speed de- 
creases with increasing electric field) properties of the semiconductor crystal. 

A typical model with negative resistance properties is described in detail, the 
resulting perturbed (both singularly and otherwise) non-linear conservation 
equations ((2.19) and (2.21)) are studied for practical situations of interest and 
the physical implications discussed in the light of experimental facts. Particular 
care is given to the shocks or discontinuities that must appear in the solutions 
when the diffusion is zero. As a result of these comparisons with experiment a 
simpler model is suggested which should suffice for a large number of practical 
situations and various quantitative features of this model are given. 

1. Introduction and physical examples of perturbed conservation laws 
Conservation laws, which govern many physical processes, give rise to 

divergence-type equations of the form 

n 

where subscripts denote differentiation and u, v are n-component vectors which 
are functions of the space variables x, with components x5 (i = 1, . . . , n) and the 

t Present address : Mathematical Institute, University of Oxford. 
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time t .  Equation (1.1) expresses in differential form the physical fact that the 
rate of change of u in any closed domain V is equal to  the flux of the vector v 
through the hypersurface S enclosing V .  In many physical situations of interest 
what are in effect sources and/or sinks are present which may be functions of 
the dependent and independent variables. In this case we may have, in place of 
(1.1) a typical lower-order perturbed equation of the form 

where f is an n-component vector function. 
To complete the physical picture a further equation, relating v to u, is required 

and is frequently of the type which may be described as an exchange equation. 
This is often simply a relation between u and v or more frequently a first-order 
differential equation like 

n 

where el, e2, e3 are exchange parameters which, like the vector function 9, may 
be functions of u, v, x and t. Although higher order and more complicated exchange 
equations can occur a remarkably large number of physical situations, in the 
biochemical sciences in particular, fall into the class governed by (1.1) and 
(1.3). It is the purpose of this paper to mention briefly several of these and to 
consider one, namely that governing the Gunn effect in semiconductors, in 
detail. 

The left side of (1.3) is a dissipative mechanism which may be positive or 
negative in the sense that an initial distribution may decay or grow with time and 
distance. The function f in (1.2) also crucially effects the growth or decay de- 
pending on whether it is a source ( f  < 0) or sink-like (f > 0)  term. 

We describe the equilibrium state in the exchange equation as that in which the 
e’s in (1.3) are zero in which case g = 0. Solving this equation for v and substituting 
it into (1.1) we obtain an equation for u only. The examples we shall consider 
here are those in which the ds, f and g are functions only of u and v. A practical 
situation of importance in $ 2  has f a function of t also. Let the solution for v, as 
a function of u in the equilibrium state (el = 0 = e2 = e3) be 

2, = B(u) 

and (1.1) becomes n 

u, + C(u) c usi +f(u, B(u.1) = 0, 
i=l 

where C(u) = grad,B(.u). 

If the matrix C(u) in (1.5) has real and distinct eigenvalues for all u the system 
is hyperbolic. It is well known that if C,(u) + 0 continuous solutions in the large 
cannot exist if the initial data is constant outside of a finite range, and shocks or 
discontinuities must appear (see, for example, Courant & Hilbert (1962) or the 
general discussion by Gel’fand (1959)). 

Let u be discontinuous across the shock (or shocks). Applying the divergence 
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theorem to the first of (1.5) using an elemental surface enclosing part of the 
discontinuity we get the speed of propagation, A ,  of the shock as 

47-41 = [B(7-4)1, (1.6) 

where [u], for example, denotes the jump in u across the shock. Relations (1.6) 
are the generalized Rankine-Hugoniot relations. The shock relations (1.6) are not 
unique for the system (1.5). In  any practical situation they must (and usually 
can) be justified on physical grounds. Another approach is described in $2.5 
which is more generally physically realistic. We consider (1.6) to be the shock 
relations which hold for (1.5). 

There has been very little work done on systems of the form (1.5) in general. 
There have been several studies when u and xi (i = 1, . . . , n) have only one com- 
ponent each. Oleinik (1957) in such a situation gives a general discussion with an 
x,t dependence included in f. Murray (1970) considers a single equation for 
u(x, t )  when f is a positive, hence dissipative, function of u, only and the single 
component of C(u) is monotonic. 

Dunwoody ( 1968) discusses the propagation of plane high-frequency sound 
waves in an ideal gas with internal dissipation. The one-dimensional system of 
equations in such a situation are 

Put -+ Q u ~  + R = 0, 
where the matrices 

P =  
P W O  0 
0 H w(H,-p-l) WH , Q =  I 

Lo  0 0 W 

where w, p, p, H ,  a and h are respectively the velocity, density, pressure, specific 
enthalpy, an internal state variable and the dissipation function. Multiplication 
of (1.7) by P-l reduces it to the form (1.5). The problem is reduced to  a specific 
single soalar equation and the method suggested by Varley & Cumberbatch (1966) 
for mildly non-linear wave propagation of high-frequency waves is used to study 
the resulting weak shock propagation for the single equation. 

An example which can be set in the coupled (( 1.2) and (1.3)) equation class is 
a model equation for turbulence suggested by Burgers (1939) and recently studied 
more generally by Case & Chu (1969). Here we have 

I ut+v,-Au = 0, 

€U, = +u2 - v,  

where h > 0 is some integral of the mean flow (or a solution of a related equation) 
and E is proportional to the inverse of the Reynolds number. The single scalar 
equation from (1.8) is 

(1.9) u, + uu, - hu = EU,,, 

which is a perturbed conservation equation with a positive dissipative term EU~, 
and a negative dissipative source-like term -Au. If e = 0 then initial-value 
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solutions of the resulting (1.9), the 'equilibrium' state of (1.8), simply grow ex- 
ponentially with shocks present. The role of a non-zero e < 1 is primarily to 
smooth out such shocks in the usual singular perturbation manner. Equation (1.9) 
is a particularly simple case of the class of equations which arise in the Gunn 
effect in $ 2  below. 

Whitham (1967) suggested an integro-differential equation for water waves 
which is an extension of the Korteweg-de Vries equation in the sense that it 
includes the Korteweg-de Vries equation. It is of the form 

m 

u,+auu,+/ K(x-[)u&,t)d5 = 0, (1.10) 
-m 

where u is the height of the surface above the undisturbed depth h,, a = $(g/h,)t 
and the kernel K is 

c(K)  = -tanhKh, (g )". j 
(1.11) 

If Kh, < 1 the asymptotic form of (1.10) with (1.1 1) gives the Korteweg-de Vries 
equation, namely (1.10) with yuzxx in place of the integral, where y = &(ghi)f.  
The integral perturbated conservation equation (1.10) has been studied by 
Seliger (1968) who demonstrates that waves, under certain circumstances, can 
form a bore (or shock) unlike the Korteweg-de Vries equation. Thus as pointed 
out by Whitham (1967) (1.10) is more analogous to the equation 

u,+auux+pu = 0, (1.12) 

which can have discontinuous solutions. 
Seymour & Varley (1970) have considered finite-amplitude wave propagation 

in systems which are dissipative and where responses are rate sensitive. They 
discuss high-frequency periodic disturbances and one equation they study is, 
in effect (1.12). 

In finite-amplitude wave motion for a certain class of non-linear Maxwell 
rods with viscosity the governing one-dimensional equation for the stress, cr, is 

VX% = [1 + w9,(4 rtlt + %A4 at, 

where g is a positive monotonic function and hh,ct is the non-linear positive 
dissipation viscosity term. By considering 0 c e < 1 and stretching the leading 
semi-characteristic co-ordinate Murray (1970) developed an asymptotic solution 
for the boundary-value problem for this equation. The first asymptotic term 
required the solution of a single scalar first-order non-linear wave equation of 
the form (1.5) where C(u) andf(u) are simply proportional to the functionsg and h. 
Discontinuities in the stress derivatives appeared and the effect of the viscous 
dissipation on the decay of such solutions was considered. 

Perturbed conservation equations which arise physically as coupled equations 
of the single scalar forms of (1.2) and (1.3) were studied by Goldstein (1953) 
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and Goldstein & Murray (1959) in a model for ion exchange processes which 
occur in fixed columns. Their equations are of the form 

I ut+vx = 0, 
evX = u-rv+(r - l )uv ,  

(1.13) 

where e, r are positive constants. The first of (1.13) essentially represents a con- 
servation of ion concentration while the second is a fairly common ion-exchange 
equation. When E 4 1 the effect of the dissipative 6-term is to smooth out the 
shocks, and alter their position by O ( E ) ,  which appear in the equilibrium (e = 0 )  
situation. A more general class of conservation-exchange equations, encompass- 
ing (1.13), and, for example, a generalized Burgers equation has been considered 
in detail by Murray (1968). 

In the above examples the perturbations of the conservation equations have 
generally been dissipative in the positive sense with the exception of the - hu 
in Burgers's turbulence model. In  the latter there has been interest in solutions 
where the negative ( - hu) and positive (mxz) dissipations balance. In the next 
section we discuss in detail a model for the Gunn effect in semi-conductors which 
has a lower-order negative dissipation and a higher-order singular perturbation 
positive dissipation. The negative dissipation is the dominant one and the energy 
for the growth is supplied naturally by an external electric circuit. The reduced 
(e = 0)  problem which should suffice for experimental comparison reduces to  
solving a scalar equation of the type (1.5) in which the characteristic speed C(u) 
is not monotonic. The model, with appropriate background material, is discussed 
in $ 2  and the solutions compared with experiment. The comparison with ex- 
periment results in a considerable simplification of the model which has to be 
considered for practical applications. The results from this simplification seem 
to be in agreement with experiment and certain quantitative results are given 
in $2.8. 

2. A non-linear analysis of the Gunn effect 
2.1. Introduction 

Experimentally Gunn (1963, 1964) found that coherent microwave current 
oscillationst appeared when he subjected a crystal sample (0( 10-3 cm)) of 
Gallium Arsenide (GaAs) to a constant electric field larger than a critical field 
of several ( z 3) kilovolts per centimetre. This phenomenon is known as the Gunn 
effect and is a simple way to generate microwave power. Kroemer (1964) sug- 
gested that the Gunn effect was consistent with what is called a bulk negative 
resistance first suggested as a practical proposition by Ridley & Watkins (1961) 
and independently by Hilsum (1962). That such is the case is now fairly well 
accepted: it is also clear from the analysis below. 

A bulk negative resistance or bulk negative conductance or bulk negative 
differential resistivity is exhibited by certain semi-conductors and in particulas 

-f In the literature it is sometimes referred to as unstable domain formation or propaga- 
tion. 
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by n-type? GaAs. Negative resistance is said to occur when the current density 
decreases as theelectric field increases for some range of the field larger than some 
finite critical value. It is a bulk effect if a t  every point inside the material, rather 
than at the junction between different types of semi-conductors, the negative 
resistance is caused by the local electric field when it is in the appropriate range. 
In this paper we shall be concerned with materials which exhibit this bulk 
negative resistance effect. As mentioned above, the possible existence of bulk 
negative resistance effects was first mooted by Ridley & Watkins (1961) and 
Hilsum (1962) using what is called a two-conduction band model, which is 
briefly described below in 8 2.2. 

The purpose of this part of the paper is (i) to review briefly the two-conduction 
band model for negative resistance with a view to (ii) setting up a model equation 
for the Gunn effect, (iii) to study analytically asymptotic solutions of the resulting 
general non-linear equation under realistic initial conditions, (iv) to interpret 
the results physically, keeping in mind the model’s limitations, and to compare 
them with experiment and (v) to suggest, as aresult of (iv), a simpler model which 
although of less intrinsic mathematical interest, is more generally in keeping with 
experiment. 

The Gunn effect has been found in semiconductors other than GaAs but because 
of its particularly well-developed technology the vast amount of work, which 
has been carried out since Gunn’s (1963) paper, has been on the possible com- 
mercial exploitation of the effect in GaAs. In general the possible commercial 
use, which is extensive, is in making inexpensive semiconductor microwave 
frequency devices and in creating new applications of microwave technology. 
The collection of papers in the Special issue of the IEEE Transactions and 
Electronic Devices (1966) give a survey of the work on the Gunn effect up to that 
time. An interesting and very readable review is given by Bott & Fawcett (1968). 
Kroemer (1968) gives a general description of negative conductance. A discussion 
of bulk-effect devices is given by Sze (1969). 

2.2. Two-conduction band model 

In  a pure semiconductor crystal there are practically no electrons in the conduc- 
tion band (that is an energy band in which the electrons can move under the 
influence of an electric field). However, if some appropriate impurity, referred 
to as doping, is added, electrons are released which can move in the lattice. In  
the case of GaAs if sulphur (a group VI element) is added it replaces arsenic 
atoms in the crystal lattice and the sulphur atom acts like an arsenic atom with 
one too many electrons. This electron can then move through the lattice in the 
presence of a field. 

Electrons move in the conduction band of such doped GaAs with an effective 
mass which depends on the energy. If there are more than one conduction band 
there is the possibility of having electrons with more than one effective mass as 
shown below. Prom a wave-mechanic point of view the energy 8 of an electron 

t Due to impurities in semiconductors there are immobile and mobile charges. If the 
mobile charges are negative it is called an m-type semiconductor. The negative mobile 
charges are balanced by the positive immobile charges in this case. 
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depends on its wave vector k. If the electron were free then k is equal to p/&, where 
p is its momentum and & is Planck’s constant, in which case € = (1/2m)fi2k2, 
where m is its mass, and the d - k curve is a parabola with a minimum or valley 
at k = 0. When the electron is in a solid such a simple state with a parabolic 
dependence of € on k does not obtain. In  semiconductors there are certain 
allowed energy bands separated by regions where real k do not exist. Such energy 
bands are usually completely filled or completely empty in pure semiconductor 
crystals. With doping, however, the spare electrons, as in the GaAs we consider, 
can exist in a normally empty energy band which is a conduction band. We now 
assume (Ridley & Watkins 1961 and Hilsum 1962) that this conduction consists, 

FIGURE 1. Schematic two-conduction band structure, 

in effect, of two conduction bands as in figure 1 with two minima representing a 
central and a satellite valley. We assume further that in the valleys the energy of 
an electron can be approximated by 

where b,, and Ki are respectively the energy and wave vector at the valley 
minimum and mi is the effective mass here assumed to be a scalar. 

We consider 8& = &,2-€,, to be small compared with the energy difference 
between the central valley and the valence (in effect where the electrons are 
tied to the ions) energy band, which has an energy band below the central valley: 
the reason for this is made clear below. For GaAs, for example, a€ + 0.36 electron 
volts (eV) and the energy gap between the lower valley and the valence band is 
approximately 1.43 electron volts (eV). 

From (2.1) the effective mass m$ in the valley is inversely proportional to the 
second derivative of the energy with respect to k, namely d2c?/dk2 there: that 
is the effective mass is proportional to the curvature at the valley bottom. Here 
m2 > rn, and if we denote by p, and puz the electron mobilities? in the respective 
valleys then ,ul > p2. Let n, and n2 be the number densities of the electrons in 
the two states. 

f Mobility is effectively the average velocity of the electrons, resulting from an applied 
electric field, divided by the electric field. 

21 P L M  44 
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If the doped crystal is subjected to an increasing electric field E the distribution 
of electrons between the two valleys will change. This is based on the assumption 
that if the field is high enough to supply sufficient energy to  the electrons a 
transfer of electrons from the lower to the upper valley occurs but not from the 
valence band to the lower conduction band. In GaAs the difference in energy 
between the two valleys (approximately 0.36 eV) is approximately 15 times 
larger than the room temperature energy of electrons in the central valley and 
O(10-l) times smaller than the energy gap between the central valley and the 
valence band below it. The electrons which move from the central or lower to the 
upper or satellite valley increase their effective mass (since the curvature in 
the valley there is larger) and hence their mobility decreases. Within each state 
the actual mobilities (as well as n, and n,) can also change as a function of the 
applied electric field, for example (see the curves in Bott & Fawcett (1968)). 
The lattice temperature in general also increases when transfer occurs. In  
our model we do not include the temperature effects per se. Since the Gunn 
phenomenon occurs at room temperatures the inclusion of temperature effects 
is not perhaps necessary for a basic understanding a t  this stage. 

In a one-dimensional model, which, as is generally accepted, suffices for 
practical applications, the electrons, in the presence of an electric field pointing 
in the negative x direction, move in the positive x direction and give rise to a 
drift electrio current, J, say. The drift current density carried by the semi- 
conductor is taken to be 

where - ej- ( e  > 0) is the charge on the electron and E = - iE ,  J, = - iJ1, with i 
a unit vector in the x direction. In  (2.2) all of n,, n,, ,ul and ,uz may be functions 
of E. We introduce the average velocity, v ( E )  =iv(E),  of the electrons by 
writing (2.2) in the form J,(E) = -env(E), 

where the total electron density n and v(E)  in (2.3) are given from (2.2) by 

J,(E) = e(nlul + n2u2) E, (2.2) 

(2.3) 

(2.4) n = n, + n2, v(E)  = ( E / n )  (n,,uu,+ n,pd 

The form of v(E)  as a function of E has been the subject of considerable study 
and controversy. Mathematically it requires a study of Boltzmann’s equation 
for, in this case, a two-band structure. Butcher & Fawcett (1965, 1966) (see 
also Butcher 1967 and Bott & Fawcett 1968) have obtained an approximate 
solution which is illustrated in figure 2: they also give a review of the state at  that 
time. As seen their theory compares well with the experimental curve of Ruch & 
Kin0 (1967) also given in figure 2, a comparison given by Kroemer (1968). 

A commonly suggested (but not by Butcher (1967) as figure 2 shows) 
drift velocity versus field curve is illustrated schematically in figure 3. This is 
obtained from (2.3) and (2.4) on the following basis. At low fields (and normal 
temperatures) all of the electrons are in the central valley and the drift velocity 
is given by v (E)  + p l E  since n k n,, n2 k 0. As E increases the mean electron 
energy increases and an increasing number of electrons are transferred from the 

t The reason for - e  instead of e for the electron charge is that practically all the 
literature on the Gunn effect uses this notation. 
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lower to the upper valley with its correspondingly higher effective electron mass. 
When sufficient electrons have been transferred by virtue of E having reached 
some threshold Em, say, the average velocity will actually start to decrease as 
E increases further: this is the negative resistance part of the curve. For very 
high fields it might be expected that most of the electrons will have transferred 
to  the upper valley and hence in this range n, + 0, n2 + n and from (2.4), 
v ( E )  = p2E.  The actual mobilities p, and p2 themselves can also depend on E 

E (kv/cm) 

FIGURE 2. Theoretical (after Butcher & Fawcett 1966) and experimental (after Ruch & 
Kin0 1967) curves for the drift velocity v(E) werm the electric field E.  

FIGURE 3. Schematic w(E)-E curve with negative resistance region 
using a two-conduction band model. 

(see Bott & Fawcett 1968) but such changes are not crucial from a qualitative 
point of view regarding negative resistance. It is now clear that if the valence 
band were not separated from the lower central valley by a much larger energy 
difference than 88, that between the central and satellite valleys, it  is feasible 
that electrons could move from it into the central valley. Under these circum- 
stances a negative resistance would not be possible. 

In the analysis below it is seen that a negative resistance in the v(E)-E curve 
is necessary for the Gunn effect. An accurate form of it is not so important at 
this sta,ge but as seen below the assumption that dv(E)/dE > 0 for sufficiently 

21-2 
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large E is important. It is possible that more complicated situations than the 
two-valley model can also give rise to a negative resistance region where 
dv/dE < 0. However, Hutson et al. (1965) showed experimentally, that if a 
hydrostatic pressure was applied to GaAs the energy gap dc? between the upper 
and lower valleys was decreased. When the pressure was high enough the 
Gunn effect did not occur at all. This tends to substantiate the conjecture that 
a two-conduction band model is a basic physical mechanism for the Gunn 
effect. 

It has been assumed, above and below, in the model that the static velocity- 
field curve (or characteristic) is appropriate to use in the dynamic state under 
which the Gunn effect is observed. The time constant associated with the inter- 
valley electron transfer is O( 1 0-13 sec) (Conwell & Vassell1966) and so the electrons 
are considered to  follow the static w(E)-E curve as long as the time scale of the 
problem is large compared with times O(10-13sec). This may not always be an 
allowable assumption. With a typical sample used in experiment the length is 
O(lO-3cm) and the velocity of the waves (or domains as used in the literature) 
is O( 107 cmlsec) and so a typical time is O( 10-lo sec). This is small compared with 
iO-l3sec, but another and perhaps more crucially important time scale is that 
for the passage of the wave past a point in the sample. If typical wave widths 
(although they continually vary as seen below in $2.3 et sep.) were as small as 
O( sec) then 
there could be some doubt as to the validity of using the static v(E)-E curve. 
Although in our analysis we shall use the static curve it should be kept in mind 
that a dynamic v(E)-E curve with, for example, some dispersion effects 
included, might be required in a more sophisticated model. Of course other 
effects, such as an explicit temperature dependence might also have to be 
included. 

In view of the theoretical complexity and variety of conditions under which 
experiments can be conducted there still seems to be some disagreement as to 
the most appropriate form to  take for the v(E)-E curve, and in particular for 
the negative resistance section. There is a divergence in the experimental curves 
as well as the theoretical ones although there is some agreement as in figure 2. 
However, all of them display at least the general form with a negative resistance 
section. For the general discussion we do not require anything more specific 
than a form for v(E) which is similar to that in figure 3. It seems that, at  this 
stage, the v(E)-E curves obtained experimentally and by some detailed transport 
calculations (see figure 2) have not yet shown that beyond some E,  E, in figure 3, 
the velocity increases again: some theoretical models do predict it, however. If 
the v(E)-E curve does not possess a relative minimum for some E > 0 the physical 
situation from the point of view of wave propagation is very different as discussed 
below in 9 2.8: the algebra is considerably easier, and is the basis for the simplified 
model which agrees more generally with experiment. We shall consider curves 
at this stage where dv(E)/dE > 0 for some E sufficiently large. For specific details 
the analytical solution is complicated for all but the simplest feasible forms for 
v(E).  For simplicity and for some quantitative description of the non-linear 
wave propagation which might occur in GaAs when the Gunn effect occurs, we 

cm) with a corresponding typical time of passage of O( 
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shall use a simplified form as in figure 4 which is continuous, piece-wise linear 
and, following Butcher, Fawcett & Hilsum (1966), is given by 

where pl, p2 are the lower and upper valley mobilities, p3 given by (2.5) ensures 
continuity at  E, and Em, Em is the threshold electric field for which larger values 

G 
Y 

c 
E m  E" E 

FIGURE 4. Piece-wise linear approximation for the w(E)-E curve (see (2.36) and (2.37) 
for details and typical values of the parameters). 

of E give negative resistance, and E, is the value of E at the relative minimum 
of w(E). Typical values for these parameters are (Bott & Fawcett 1968) 

(2.6) 
pl + 1.1 x lo4 cm2/volt sec, p z  + 50 cm2/volt sec, 

E,  + 105volt/cm, Em k 3.3 x 103volt/cm, 

which from (2.5) give 
vm = w(Em) k 2.7 x lo7 cm/sec, 
v, = v(E,) = 5 x lo6 cm/sec, 
,u3 = 2.6 x 102 cm2/volt sec. 

An experimentally more realistic v(E)-E curve is obtained at least for E < E, 
from (2.5) by simply rounding off the slope discontinuities as they stand which 
results in a lower v(Em) closer to the accepted experimental one of approximately 
2.2 x 1 0 7  cm/sec. The reason for considering a piecewise linear form is that the 
integrations involved in the solution can be carried out simply. Until more general 
agreement is found for the V(E)-E curve there is no point in using a more com- 
plicated form: quantitative differences would not in any case be major. From 
a theoretical and practical point of view what is more important is whether 
dv/dE > 0 for any realistic range of values of E > Em. Some current views (for 
example, Butcher 1967) exclude such a possibility. These views are substantiated 
by the results below. 
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2.3. One-dimensional model equation 

When a sample of n-type GaAs, or other suitable semiconductor, is subjected to 
an electric field in the vicinity of the critical field Em, or a field in the region where 
dv(E)/dE < 0, the microwave current oscillations observed depend on the various 
parameters and characteristics of the sample and the external circuit. A schematic 
form of the device is given in figure 5. It is clear from experiment and it is 
generally accepted that a one-dimensional model will suffice for most practical 
situations and so all dependent quantities are taken to be functions of a single 
space co-ordinate x and the time t. As far as the author.is aware most of the models 
and subsequent analyses have been linear and/or numerical studies or those in 
which the wave (or domain) does not change in shape. Here we wish to consider 
the non-linear constantly-changing wave problem analytically. Relevent to a 
non-linear approach is the work of Knight & Peterson (1966) : it is discussed below 
at the appropriate place. 

- L -  

4 
Metal contacts 

FIGURE 5. Schematic Gunn effect device. 

As a first step we isolate the effect by considering the situation which occurs 
in the sample only and we shall not consider the external circuit problem. We 
require equations therefore which will govern,the total current J and field E 
in the semiconductor sample. From Maxwell's equation J = curlH, where H 
is the magnetic field, J, with a single component, J ,  in the negative x direction, 
is a funotion o f t  only: this is supplied by the external circuit. This current in 
the crystal is made up of the drift current J, of the form (2.3) plus the displace- 
ment current plus the diffusion current. The current conservation equation is 
thus 

where subscripts denote partial derivatives and kq,, assumed to be constant, 
is the semiconductor dielectric constant, -e is the electron charge and D(E)  
is the field-dependent diffusion coefficient. A form for D(E)-E has been given by 
Bott & Fawcett (1 968). 

Let the impurity or doping density in the crystal be no which we shall take to 
be uniform and independent of 5: (it is easy to  include an x dependence in the 
model equation). For low fields (E < En&) any group of excess mobile electrons 
or space charges simply disperses due to Coulomb forces and the total electron 
density n is then equal to no and the electric field, because of Poisson's equation 
((2.9) below), is uniform throughout the sample. In  this situation Ohm's law 

J = - nev(E) + kc0EE, + iea[nD(E)]/&, (2.8) 
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holds and the electron drift velocity is proportional to E as in figures 3 and 4. 
For values of E > En, the excess mobile electrons do not disperse but in a sense 
can pile up due to the negative differential resistance and give rise to inhomo- 
geneous regions of electron density. The equation relating E to the charge density 
n in this case is Poisson’s equation, namely, 

keoE, = e(n-n,). (2.9) 

In (2.9) it should be remembered that E points in the negative x direction. 
If the field is low enough then n i no and the electrons drift with a uniform 

velocity for a given E. When the field is high enough however this is not the case 
and inhomogenities in electron density appear and n + no. From (2.9) the 
integral of n - no over the sample length must still be zero of course. Since n 2 0 
physically, (2.9) puts a limitation on allowable E,, namely Ex 

Equations (2.8) and (2.9), or with slight variations, with w(E) such asin figure 3, 
are those which seem to be fairly generally accepted as the temperature- 
independent model equations for the Gunn effect. 

Substituting n from (2.9) into (2.8) in scalar form (E = -iE, J = -iJ, 
v = iv(E)) gives 

(2.10) 

Equation (2.10) is in the form of a single scalar conservation equation (1.5) 
with a higher- and lower-order perturbation included. 

If we consider short samples then J ( t )  (in (2.10)) is intimately connected with 
the external circuit. However, if the sample is long enough so that the wave- 
length of a disturbance in E (or n) is small compared with the sample length, 
J can be obtained from (2.10), when E is constant, and is 

- en,,/ks,. 

keoE,+ksow(E) E,+ [en,v(E)-J] = i3[l)(E) (eno+keoE,)]/ax. 

J = en,w(E,), (2.11) 

where E = E,, say, is the uniform constant field far from the disturbance wave. 
When E = E,, n(z , t )  = no, of course. 

We wish to consider the initial-value problem for (2.10) in the situation when 
the sample is infinitely long (that is J from (2.11) is a given constant) and so we 
consider 0 < x < 03. We thus seek a solution of (2.10) with J from (2.11), v(E) 
and D ( E )  known functions of E,  and 

E(x,  0) = $(x), E(0,t) = E, = E(03,t), (2.12) 

where a typical $(x) is as shown in figure 6. The $(x) is a form of disturbance field 
the history of which we wish to study. If such a solution, or an approximate one, 
can be found certain pertinent information regarding the Gunn effect would be 
available. The basic idea behind this model for the Gunn effect is that when the 
uniform field E, > Em (or as we shall see if max $(x) > Em) an initial disturbance 
or wave travels across the sample until it  reaches the anode where it is immediately 
absorbed and another with profile $(x) appears at the cathode. 

There seems to be some question as to how a disturbance wave appears at  all. 
The fact that there appears to be only one wave in the sample at any given time 
suggests that it may be a property of the external circuit. Another possibility 
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is a special type of instability property of the crystal: we discuss this briefly 
in $2.8.  

Here we study the wave-type propagation problem posed by (2.10) with (2.11) 
and (2.12). If a realistic solution can be found then such quantities as wave speed, 
wave shape, shock generation in the zero diffusion case can be given and an 
estimate of the frequency of the current pulses using the length, L, of the sample 
for distance of travel. After E has been found an approximation to the excess 
voltage, V ,  which is required in a finite-length sample is given by 

v = (E-E,)dX. LL (2.13) 

t 

I 

I I 
L 

0 s X X 

FIGVRE 6. Initid electric field profile. 

- 

We now non-dimensionalize (2.10) and (2.11) by using the following reference 
quantities giving, where appropriate, typical practical values for GaAs: 

L, length of the sample M 
E,, electric field w 3.3 x 103volt/cm; 

vo = poEo, drift velocity of electrons w 2 x lo7 cm/sec; 

p,, electron mobility z 5 x lo3 cm/volt see; 

w = v,/L, drift velocity frequency M 10lO/sec; 

Do, diffusion coefficient (when E = E,) M 4 x lo2 cm2/sec; 

no = ~ o E o / e v o ,  doping density; 
co, static conductivity M 1 mho/cm; 

ks, = 13-56,,,, dielectric constant; 

w, = c,/keo, low field dielectric relaxation frequency w 1012/sec; 

wd = vi/D,, diffusion frequency M 1012/sec. 

cm; 

(2.14) 

(2.15) 

and so u, and all primed quantities in (2.15) are non-dimensional. Using (2.14) 
and (2.15) the governing equation (2.10) with (2.11) takes the non-dimensional 

Write x = x’L, t = (L/vo)t’ = t ’ /w,  E = E,u, 
v(E)  = w,v‘(u), D(E) = D,D’(u), E, = E,u,, 

form 

(2.16) 
wc a 

u,+ w(u) u, + - [v(u) - v(u,)] = - w ax 
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where for convenience in (2.16) and below we have dropped the primes on x, t ,  w 
and D. A solution of the parabolic equation (2.16) is sought subject to (2.12) 
which we take in dimensionless form as 

u(x, 0) = $(x), u(0,t) = ue = u(CO,t). (2.17) 

Figure 6 in dimensionless form illustrates a typical disturbance $(x) we shall 
consider. 

For GaAs in particular and for Gunn effect semiconductors in general 
w/wd < l(O(10-2) from (2.14)). For high conductivity semi-conductors w/wc < 1 
and wc/wd is O(1) as in (2.14) while for low conductivity ones w/w, is O(1) and 

(2.18) wc/wd < 1. Writing 

(2.16) becomes 

where 

8 = W / W d ,  A = w c / 0 ,  

Ut + [v(u) + ehD,(u)] u, + h[v(u) - w(u,)] = €8[D(U) u,yax, (2.19) 

conductivity semiconductors. 
e < 1) h = O(l ) ,  low 

B < 1, h 1, eh = O ( l ) ,  high 

The problem is thus a singular perturbation one, for all A, with the small para- 
meter e which multiplies the highest derivative being the ratio of a typical drift 
current frequency to  the static diffusion frequency or, what is the same thing, 
the ratio of the diffusion velocity (Do/&,) to the drift velocity w,,. 

The problem posed by (2.19) with (2.17) and given non-monotonic w(u) and 
D(u) (as is the case here) is interesting mathematically. For some range of u, D(u) 
may also have large derivatives. However, keeping in mind the physical back- 
ground to the governing equation (2.19) we must put limitations on the minimum 
value for u, for any practical Gunn phenomenon application. The non-dimensional 
form of (2.9) is hu, = (nllz,) - 1, 

and so uz 3 - l /h is a physical restriction since n 3 0. For D(u) and its derivatives 
O( 1) it is shown below in 3 2.5 that realistic solutions for a long (infinite) sample 
are never possible for all time for e small. This restriction on u,, also limits the 
type of allowable $(x) in (2.17) in the $,(x) < 0 region. 

From a mathematical and physically general point of view if we consider only 
(2.19) the term on the right is dissipative and it tends to  make the initial field 
wave $(x) decay. However, since h[w(u) - w(u,)] < 0 for some range of u > u, > urn 
( =  E,/E,) it is, for such u, a source term with a negative dissipative effect which 
tends to make $(x) grow. With B = 0, which is the same as zero diffusion, the 
problem reduces to that of non-linear wave propagation governed by a first- 
order non-linear hyperbolic equation in the form of a perturbed conservation 
equation such as (1.5). Discontinuities or shocks in u will form in general and the 
role of the higher-order e-dissipation term with e < 1 will simply be to  alter the 
position of these shocks asymptotically by O(e)  and to smooth them out over a 
distance O(e) in which the first-order derivatives are O(e-l). A class of such equa- 
tions when h = 0, 6 < l has been studied by Murray (1968) and when h $: 0, 
B = 0 by Murray (1970) in both cases with v(u) a monotonic function of u. 

(2.20) 
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Propagation of wave-like solutions of, in effect, (2.19) which do not change in 
shape have been studied by Butcher, Fawcett & Hilsum (1966) by writing the 
dependent variables E and n in (2.8) and (2.9) as functions of the single variable 
x- Ut where U ,  the constant wave speed of propagation, is to be determined. 
They deduce from the ordinary differential equations, which are obtained from 
(2.8) with J( t )  constant and (2.9) on this assumption, that U = v(E,), the drift 
speed in the undisturbed state where E = E,. The maximum value of E in the 
wave is then found. They then proceed to the limit as the diffusion coefficient D 
tends to zero and so from (2.18) and (2.14) they have, in effect, e = 0. However, 
the limit D + 0 is not uniform since the resulting equation is a first-order non- 
linear hyperbolic wave equation with wave solutions which cannot propagate 
without change in shape nor without the appearance of discontinuities; such 
an assumption would imply that the characteristic speeds for the equation, 
namely v(u)  would have to be constant. This can happen only when the h- 
multiple is also zero. With e =k 0 the existence of such constant shape wave-like 
solutions implies a cancelling out of the two competing dissipations mentioned 
above. This is physically unlikely since in practical situations E < 1 with all the 
consequences it implies from a singular perturbation viewpoint. 

Thus since e < 1 for both high and low conductivity semiconductors the right 
side of (2.19) does not affect the quantitative features to 0(1 )  as regards shape 
and propagation speed. It smooths out the discontinuities which must appear if 
$(x) - u, is continuous and is zero outside a finite range in x. Thus, as a first and 
physically realistic step we shall consider the wave propagation when the diffusion 
coefficient is zero: that is e = 0. It is suggested that the detailed physical features 
obtained from solutions of the reduced ( e  = 0 )  problem, for whatever is the 
appropriate v(u)  preserve the important quantitative features of the phenomenon 
governed by (2.19) with conditions (2.17) for the low conductivity case. In  the 
high conductivity case eh = O(1) and from (2.19) the importance of D(u) is 
evident. If D(u)  is taken to be constant then the reduced problem obtained on 
letting e + 0 even with eh = O(1) is the same as the low conductivity case. If 
D,(u) =+ 0 the situation is quite different. It can be studied in exactly the same 
way as the following although the results could be markedly different since the 
characteristic speeds are w(u) + ehD,(u) in place of v(u). We shall not consider 
this specific case further. 

2.4. Non-linear wave propagation problem 

With h =t= 0 the mathematical problem reduces to finding solutions of 

(2.21) 

obtained from (2.19) with e = 0 and (2.17). In dropping the order of (2.19) on 
setting e = 0 we removed one boundary condition, namely the one at infinity, 
from (2.17). Equation (2.21) is a perturbed conservation equation of the form 
(1.5). 

It should be mentioned again at this stage that once u (the electric field) has 
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been found the electron density n(x ,  t )  is given immediately by (2.20). If we 
integrate (2.20) with respect to x from zero to infinity (or a sufficiently large x 

so that u = ue) the left side is zero and so, as mentioned above (n -no) dx = 0. 

Thus if n is not simply a constant the n(x ,  t )  - x curve must have a solution with 
n > no in one part, called an accumulation layer, and n < no in the other part, 
called a depletion layer. We shall not discuss the specific solution for n but it 
should be noted that it can be obtained, once u has been found, on taking appro- 
priate care when the u solution contains shocks discussed in detail below. The 
restriction on uz 2 - 1/A from (2.20) should be kept in mind for any practical 
application. 

In (2.21) h ( >  0) can take any value covering both the high ( A  9 1) and low 
( A  = O(1))  conductivity cases, although for the former we require D(u) to be 
constant here, and w(u) will be of the form illustrated dimensionally in figures 3 
(see also figure 7) and 4. We further consider #(x) of the form 

SO" 

$(x) = u, (x < 0) 
= $(x) (0 < x < X )  
= u e  ( X  < x), 

with the maximum value $ defined as the value of $(x) at x = 2,  that is 
- 
$ = max $(x) = $(z), 

o < x s x  

(2.22) 

(2.23) 

and where $(x) is monotonic for 0 < x 6 5 and for 5 6 x < X as in figure 6 (see 
also figure 8). 

There are several cases to consider which result in different wave configurations 
and which are of varying practical importance. The two main classes are (I) 
u, > urn and (11) u, < u, (see figures 7) of which the former is of more importance 
practically for the Gunn effect. Within each class the solution depends on the 
form of #(x) of course but more importantly on the maximum of $(x), $, given 
in (2.23). 

In  case I ,  for example, if u, < $ < u, then A[w(u) - w(u,)] < 0 is a source or type 
of negative dissipation term and u(x, t )  increases from its initial form u(x, 0). 
In  fact, omitting for the moment shock discontinuity considerations, u would 
increase until u reaches u, and finally (see figure 7) us defined by 

 us) = 4 U e )  (us > ue)- (2.24) 

Clearly the larger the background field (but u, < u,) the smaller is the maximum 
field us. At this point the A-term tends to zero, as is also the case when u --f u,. 
For that section of the u(x,  t )  - x curve where u is increasing (similar to the 
0 < x 6 X: section in figure 8) and u, < u < u,, w(u) is a monotonic decreasing 
function of u and wave steepening occurs and the appearance of discontinuities 
of shocks is inevitable. For the section where u is increasing and u, < u < u,, w(u) 
is a monotonic increasing function and so this section of the wave tends to flatten. 

On the other hand in that section where u is decreasing (similar to X < x < X ,  
in figure 8) the wave tends to steepen for u, < u < us and to flatten foru, 6 u < u,. 
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As the flattening and steepening occurs the wave continually grows with a 
maximum u = u, and at the same time the area under the curve (u - u,)-x grows, 
as it must in view of the source like A term. 

- 
0 um ue 4. UIZ 

((0. 

U ( U )  

u,,, 

0, 

I 
I 
I 

U(i i2 l )  

4- 

0 4, u, a21 u, u, I 1  

(4 
FIGURE 7. Equal area rule for determining the constant shock properties (see $2.5).  

% 

FIGURE 8. Dimensionless initial field profile. 

In  the next three sections we proceed with the mathematical solution, since 
certain interesting facts are found about solutions of such equations in which v(u) 
is not monotonic. The method may also be of practical interest in the reduced 
( E  -+ 0) situation in which D(u) is not constant. In certain practical situations the 
solution demonstrates the inadequacy of the model for explaining the physical 
phenomenon we had in mind since the wave can steepen and eventually a shock 
may, but not always, appear on the wave side in which .u, < 0 and there 
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ux -+ -m. In  this case the condition from (2.20) that u, 2 - l/h is violated for 
some t > 0 even if the initial value q5z(x) > - l/h. A specific example is worked 
out to provide typical numbers. That shocks can eventually appear on the u, < 0 
side does not necessarily mean the model solution is not valid for the range o f t  
of practical interest. 

If a shock does appear on the u, < 0 side in the range oft found in experiment 
the singular perturbation solution, in which 6 + 1, cannot compensate for the 
violation of the condition u, 3 - l /h since near this shock it gives 

u, = O( - 1/€) + - l/h. 

In  such a situation the model (with J ( t )  constant in (2.10)) can still be used for the 
Gunn effect if v(u) has a different form from that assumed above and is a form 
frequently found experimentally. It must have an effective unlimited negative 
resistance region: that is w(u) < 0 for all u > u, in the practical rangeof interest. 

The point about the possible existence of shocks on the u, < 0 side has also been 
noted by Knight & Peterson (1966) for an equation like (2.21). However, they pro- 
ceed by excluding this shockand by suggesting aresultant constant wave solution. 
Such a solution cannot exist for (2.21) : the growth of any wave is calculatedin $2.6 
and it is not zero. The growth is directly related to the voltage across the sample. 

2.5. Shock formation and speed of propagation 
The characteristics form of (2.21) is 

xu = v(u(x(cr), t(cr))), tu = 1, u,+A[v(u)-v(ue)] = 0, (2.25) 

where CT is a parameter measured along the characteristic. From (2.25) 

x, = v(u) = w(ue) - ( l /h )  u,. 

On choosing t = 0 when (r = 0 and integrating the last equation, (2.25) becomes 

t = cr, 
as 

= -ha, 
I i x o l  u(s)  - v(ue) 

where xo is the value of x at t = 0. The solution obtained from (2.26) ceases to be 
single-valued as soon as two or more characteristics intersect which, from (2.26) 
is when x ceases to be a single-valued function of xo: that is, when axlax, = 0. 
From (2.26) 

(2.27) 

where primes denote differentiation with respect to the single argument. Thus if 
t, is the smallest time t when x first ceases to be single-valued then from (2.27) 
it is the least t satisfying 

(2.28) 
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where X is defined by (2.28), 0 < xo < X and u as a function of xo and t ( =  IT) is 
obtained from the integral in (2.26). 

Case I: u, > u, > urn.? Since $(xo) is monotonically increasing and decreasing 
according as 0 < xo < 3 and 5 < xo < X respectively, #'(xo > 0 until xo = 2 
where # = 3 and $'(xo) = 0 a t  which point, from (2.28), X ( E , t )  = 1: X(xo, 0 )  = 1 
also. At a time t > 0 with 0 < xo < 3 any u(xo,t) in the range u, < u 6 u, (see 
figure 7) has increased from its initial value u(xo;O) = $(xo) and so 

gU($(zo)) > Nu(x0, t ) )  

and since $'(xo) > 0,  X(xo,t) < 1. Further for t > 0 with 0 < xo 6 3 and 
u(xo, t )  in the range u, < u < us by a similar argument X(xo, t )  > 1. Thus a critical 
time t = 6 uv 
and #(lxoc) <u,. On the other hand when 3 < xo < X and so #'(xo) < 0 there 
may be another critical time t = 2t, which occurs for a critical xo = 2x0c such that 
u, < u(2xoc, 2tc) < us and $(2xoc) 2 u,. If h is large enough this latter critical time 
2tc, and hence a shock in this region, may not exist (see (2.42) below, for example). 
Alternatively 2tc may be sufficiently large to be outside of the range of practical 
interest and this solution could still be of use for experimental comparison. 

say, occurs for a critical x,, = lxoc; say, such that u, < u(lxoc, 

d d  t x d l  xd2 X f  v (u,) 1 X 

FIGURE 9. Typical wave with two shocks. 

As soon as the solution ceases to be single-valued we must have a shock in the 
usual way. The first shock to form depends on #(xo) and A. For t > max [IltC, 2tc] 
a typical situation is as illustrated in figure 9 where two shocks exist at x = xdl 
and x = xd2. Such a situation is not allowed physically if 2tc is in the time range 
of experiment. 

Case 11: u, < urn. In  this case if 7 < un, say where uq is defined as the least 
u > u, satisfying w(uq) = w(u,) (and so urn < uq < us: see also figure 7),  then 
h[w(u) - v(u,)] 2 0 for all uq 2 u 2 u,. Thus the h term is a dissipative sink-like 
term and the initial wave $(x) simply decays to u, with time. If 3 is large enough 
(3 > un) then part of the wave will grow while the rest decays and spike like 
solutions appear. For 3 < uq the specific manner of the decay and the appearance 
or otherwise of shocks depends on the form of h[v(u) - w(u,)] as u --f ue: such 

If e, > u, this case is similar to case I1 as seen below. 
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situations have been considered in detail by Murray (1970). From this it is clear 
that, in this case 11, for any Gunn phenomenon to exist #(x) must be such that 
7 > uq for some 0 < x < X so that A[v(u)-w(ue)] < 0 for some u, namely 
uq < u < us. But this case is in essence similar to that in case I considered in 
detail below, 

If u, > u, then h[v(u)-v(u,)] > 0 which is again like case I1 and so will 
not be discussed further here. We are thus left with case I as that containing 
the essential features of a model which gives solutions related to the Gunn 
phenomenon. 

Case I: u, > ue > u,. Consider $(x) to be as illustrated in figure 8 in which 
us 2 $(x) > u, for some 0 < x < X and h and $(x) such that and ,tC exist. At 
t > max 2tc] let the shock which started at t = have position x = zdl(t) and 
let u increase discontinuously from u(xdl - , t )  = ull(t) to u(xal + , t )  = u12(t) across 
it. Across the leading shock at  x = xdz(t)  let u decrease from u(xd2 - , t )  = uz2(t) 
to u(xd2+, t )  = uzl(t) as in figure 9. From (2.26), incidentally, the positions of 
those parts of the wave which at t = 0 had u = u, were at xo = 0, X are, for 
t > 0, now at x = v(u,) t and x = X+v(u,)t respectively: the former of these 
holds as long as u,,(t) > u, which for large enough t is not the case as seen 
below. 

The relations which hold across shocks in solutions of (2.21) are not unique 
unless they are constrained by some prescribed condition which must really 
come from the physics or is obtained from the limit of a higher-order equation, 
(2.19), in this case, as E + 0. In situations of practical interest the shock conditions 
are generally the same as those obtained simply from applying Gauss's theorem 
(or as in Courant & Hilbert 1962) to (2.21) across each shock in turn. These are 
the same, of course, as those obtained from the condition that requires all solu- 
tions of (2.21), with or without shocks, to satisfy the integrated form of (2.21): 
we recall this below where such an integral is required for the voltage. This 
integration approach was used, in effect, by Goldstein (1953), Goldstein & Murray 
(1959) and Murray (1968,1970). Thus, for the two shocks at  xdl and xd2 we obtain 
from (2.21) the appropriate shock propagation speeds as 

When the shocks are weak and the changes in u are small (2.29) give the shock 
speeds as the usual average of the speeds of the characteristics meeting on the 
shock, namely, &[v(ull) + v(u12)] and +[v(uz2) + W ( U ~ ~ ) ]  respectively. 

We now consider the characteristic solution (2.26) to hold in th9 regions 
0 < x < xdl-, xdl+ < x < x d 2 - ,  xd2+ < x. Thus, for the shock at xdl(t), for 
example, we have from (2.26) 
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which on eliminating x,, gives u,, as a function of xdl and t. A similar equation 
gives u2, as a function of xal and t. These together with the first of (2.29) determine 
x,,(t)with the boundarycondition at t = ,t,where ~ ~ ~ ( ~ t , )  = u12(ltc). Similarlyx,,(t) 
can be obtained in principle. Once xdl, xd2 have been found ull(t), u12(t), u2,(t) 
and ~ , ~ ( t )  can be obtained from (2.30) and similar equations. Note that (it was 
shown above) u, 6 ~ ~ ~ ( ~ t , )  6 u, and u, 6 u2,(,t,) 6 us. The shocks, once formed, 
continually change in strength and, certainly for t close to the critical times, 
grow. 

We now show that the shocks asymptotically grow to  a maximum stable size 
and speed of propagation given by a simple area rule. 

2.6. Equal area rule for shock propagation 

Consider in the first instance the shock at  x = xal(t) where u, 6 ul1(,tc) 6 u,. 
For u in the range ue 6 u < uv, w(u) is a monotonic decreasing function of u 
and so for u, 6 ull 6 u12 6 u, 

(2.31) 

From (2.31), therefore, the shock speed is less than the characteristic speed 
v(ull) and greater than the characteristic speed w(u12). Thus the characteristics 
for x < xdl catch up with the shock and ull decreases with time until it eventually 
reaches u,. On the other hand the shock overtakes the characteristics for x > xal 
and uI2 grows at least until uI2 = u,. Since ull cannot decrease beyond u, (since 
h[w(u) - w(u,)] is zero for u = u.,) u12 will continue to increase beyond u,, as long as 
dxal/dt > w(u12). Referring to figure 7(a)  the right inequality in (2.31) says that 
the area under the curve w(u) between ull and u,, is greater than the area 
(ula - ull) ~(u,,). It is clear therefore that the shock will grow until u,, decreases 
to u, and u12 increases to a maximum ZI2, say, where us > Z,, > u,, given by 

(2.32) 

Equation (2.32) says that Z12 is determined by simply requiring that the areas 
ABC and CDE in figure 7 (a) are equal. In  this way the maximum shock speed 
for the shock at  xdl equals the characteristic speed at  x = xdl + , namely w(Z12). 
For times larger than that required for ull to reach ue and u12 to reach G,, the 
shock speed of propagation and its strength remain constant. Note that the ex- 
pressions in (2.32), and (2.33) below, are independent of A. The time to reach the 
steady state, which isJinite for xdl, is a function of A, of course. 

Considering now the shock at xd2, its constant strength us - U,, and constant 
speed of propagation w(Ti,,) are given by a similar equal area rule where area 
ABC = area CDE in figure 7 (b )  and EZ1 is given by 

(2.33) 
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The approach to the constant shock state is less simple, however, since u22 +- u, 
only after an infinite time and it may not be a simple monotonic growth. 

When the constant state has almost been reached so that dx,,/dt = v(zL,,) that 
part of the wave x > xd2 flattens and stretches out since v(V,,) < v(u)  for 
ue < u 6 Tiz1. 

For that part of the wave where xdl < x < xd2, uv < Ulz < u < us, u 
grows continuously with time since ut > 0 from the last of (2.25). By a simple 
linearization of the last two equations of (2.25) when u + us (and hence 
v(u) - v(.u,) = v(u,) - (us - u) v’(u,) - v(u,) k - (us - u) ~’(u,))  u tends to us expo- 
nentially in time with exponent hv’(u,) t .  

Since the magnitude of the slope of that part of the v(u)-u curve for 
ue d u < uv is almost everywhere larger than the slope where u8 6 u < us it can 
be shown in general (or demonstrated simply using (2.5) as a basis for v(u)) that 
when the constant shock strengths and speeds have effectively been achieved the 
equal area rule implies that dxd2/dt + v(U,,) > v(U,,) = dx,,/dt. Thus the distance 
between the shocks increases and the wave spreads out. A typical form is shown 
in figure 10. 

xdl XdZ X f U ( U , ) ?  x 

FIGURE 10. Typical solution when the two shocks have reached their steady state. 

The area under u - u, continuously increases (see also figures 11 and 12) by the 
spreading of the wave since there is a maximum relative amplitude us-ue. A 
measure of the growth is obtained by integrating the differential equation in 
(2.21) from x = 0 to x = X + v(ue) t, the leading edge of the wave, to give 

If no shocks are present slat may be taken outside of the integral and the second 
becomes simply an integral in u. If shocks are present we can do exactly the 
same thing only if we use the specific shock relations (2.29). As mentioned above 
this is another way of obtaining the shock conditions. In  view of the physical 
significance of the integrated form in this problem (see (2.35) below) this is 
clearly the physical justification here, namely. that the voltage at a given time 
is the same whether or not shocks are present. Thus, with or without shocks the 

22 F L M  44 
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second integral in the last equation is zero (u = u, at both limits) and the in- 
tegrated equation becomes, using (2.29) when shocks are present, 

a x+v(~,)t x+v (u.) t 
UdX = h [ do 

= hIT,, 

[v(ue)-w(u)]dx (t  6 f), 
> 0 ,  (2.34) 

u' 'U ( u r )  1 

X+v  (UJ t 

[v(ue) - ~ ( U ) I  dx ( t  G f), 

where f is the time when ull has decreased to ue. 
Of practical importance is the excess voltage V (defined slightly differently 

in (2.13) for the finite sample) over that required to maintain ue uniformly. Thus 

From (2.34) it is easily shown that 

V( t )  = SX$4X) dx - u,[X + v(ue) t ]  
0 I (2.35) 

The major qualitative and some quantitative features of the wave growth, 
form and speed of propagation of the wave motion phenomenon governed by 
(2.21) are given from the above. For example, if we consider a finite length ( = 1) 
sample then the front of the wave will reach the anode after a dimensionless time 
l/v(ue). Practically what is important then is whether &, is greater than or less 
than l/v(ue). The latter situation cannot hold physically. On the basis that the 
wave is immediately absorbed when the front of the wave reaches the anode, 
with another starting immediately at the cathode, the dimensional frequency 
o = O(v(E,)/L) = O(lOlO/sec) from (2.14). On the other hand if we required the 
trailing edge to reach the anode before another appeared then the typical dimen- 
sionless frequency is O(v(Z12)) on the basis that the shock at xdl forms the trailing 
edge. The frequency on this basis is smaller than O( 10IO/sec). 

The time of passage of a wave is given approximately by 

rx + v(ue) t - ~ d : d l ( t ) I / v ( w  

which for a meaningful comparison with the Gunn phenomenon, irrespective of 
the presence of the leading shock, must be small compared to unity. 

Since the actual form for v(u) as a function of u is still not definite we consider 
in specific detail the solution when the salient features of the model are incor- 
porated in v(u) by considering it to be piece-wise linear as in (2.5). The results are 
specifically relevant to our simplified Gunn effect model below in $2.8. The 
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solution also gives typical values in a specific and seemingly relevant situation and 
demonstrates the limit of possible practical validity of the model by giving 
specific expressions for and 2tc. 

2.7. Simple illustrative example 

We consider the specific case where w(u) is piece-wise linear and, on dividing both 
sides of (2.5) by vo( = poEo, see (2.14)), is given by 

v(u) = p1u (0 6 < urn), 

(2.36) 

~3 = h u m  - r~zuv) I ( u v  - urn) 2 

where the dimensionless pl, p2, ,u3 are the dimensional mobilities in (2.5) divided 
by po ( =  5 x 103cm/voltsec). From (2.6), (2.7) and (2.14) 

U, = 3 x 10, 

pl + 1.62 x 10, 
(2.37) 

p3 = 5.48 x 
pz + urn = 171 

Here us, defined by (2.24) is given from (2.36) as 

Us = [(PI +PA Um-P3UeIIPz, 

which with (2.37) and a typical ue gives 

U, + 10, U, + 1-127 x lo3. (2.38) 

Note that whatever form of #(x) is used the maximum field is us, defined by 
(2.24), where typically from (2.38) and Eo from (2.4) the maximum field 
E, = 3.67 x 103kv/cm. The larger the background field u, the smaller is the 
maximum field as is seen from (2.24) and, for example, figure 7. 

With the initial wave $(x) such as in figure 6 shocks form from the $'(x) > 0 
side when t = is the least t satisfying (2.28) with $' =- 0. From (2.26) u($(xo), t )  
is obtained on setting w(u) = (pl+p3)um-p3u (since the shock forms at 
u, c u < u.,) and integrating to give 

u($(xo), t )  = ue( 1 - @ P a t )  + $(xo) e k p s t ,  (2.39) 

where x,,, t are so restricted in (2.39) that u, < #(xo) c u, and u, < u < u,. 
Equation (2.39) with the first of (2.26) gives u(x, t) .  Substitution of (2.39), with 
(2.36) from which v(u) - v(u,) = p3(uc- u) in the range in which we are concerned, 
into (2.28) gives Itc as the least t satisfying 

(2.40) 

where xo takes values in the range where $'(xo) > 0 and u, < $(xo) > u,. 
In an malogous manner when u, 6 u < u8 and xo is such that u, 6 $(xo) 6 us, 

(2.41) u($(xo), t )  = us( 1 - e-+at) + $(xo) e+,t, 
22-2 
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where in (2.26) we used the appropriate v(u) = p,u from (2.36). Equation (2.41) 
with the first of (2.26) gives the solution in x,t. With (2.41) the critical shock 
formation time 2tc is given, using (2.28), with v(uJ for v(ue) for convenience in this 
range, by 

(2.42) 

where in (2.42) xo takes values in the range where $'(xo) < 0 and u, < $(xo) < us. 
Note that in (2.42) if h is large enough may not exist and no shock forms on 
the $' < 0 side. Thus in the high conductivity case with h 9 1 this model and 
solution could obtain physically since the limit on zc, (u, 2 - l/h) could still 
hold for all t. As mentioned above from a practical point of view if 2tc existed and 
was found to be sufficiently large that the wave would have passed through the 
sample in a time t < 2tc the solution could still be relevant : that is we would require 
ztc > l/v(ue) a t  the least. 

and ztc as in (2.40) and (2.42), which also give the respective critical 
xo's, the u's at which shocks begin, namely ull(,t,) ( =  u,,(,tC)) and wgl(,tc) 
( = ~ ~ ~ ( ~ t ~ ) ) ,  are then given by (2.39) and (2.41) with the appropriate t from (2.40) 
and (2.42). 

l 7  hPZ [ I$'(xo)lmax 

1 
ztc = - -log 1 -  --__ 

With 

Suppose, for example, that $(x) may be approximated simply by 

(2.43) I $ ( x ) - u e  = x/a (0 < x < *X), 
= ( X - x ) / a  (QX < x < X), 
= 0 (X < x). 

The global physical restriction that u, > - l /h  requires from (2.43) that a 2 A. 
Thus, from (2.40), ,tC = (l/hp,)log(l +ah) and from (2.42) ztc is either infinite 
if ah = 1 or does not exist if ah  > 1. 

The complete picture of the wave problem posed by (2.21) with v(u) from (2.36) 
is given by the first of (2.26) with (2.39) and (2.41) for t < min [,to For ex- 
ample, if we consider a point on the initial wave which has u($(xo),  0) < u, then 
u(x,t) is given by (2.26) with (2.39) for t < to,, say, where to, is defined as the 
time it takes for that initial u($(xo),O) to reaoh u,: to, is a function of xo. For 
t > to, we must use (2.41) with t replaced by t -to, and u($(xo), to,) replacing $(xo) 
as the multiple of e-*Pet. 

The first shock starts at t = ,t, and the shock speed, growth and strength can 
easily be found from the first of (2.29) together with (2.39), (2.41) and the first of 
(2.26) all taken at x = xdl with u = u,,(t) at xdl- and u = ul,(t) at xdl+. The 
time for growth to the maximum stable shock can be found. The maximum size 
is El, - ue where, from the equal area rule (2.32), U,,(u,) is given by 

namely, u,, = u, + (pl +p3)  um(u, - ue) - 

With the typical values as in (2.37) and (2.38), Ulz  = 1 . 6 ~  10, (uv < El, < us). 
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Note that the shock speed w(U,,) < w(ue). A typical solution is illustrated in 
figure 11 for a #(x) which is effectively a rounded off version of (2.43). 

The width of the wave continuously increases and the width W ( t )  between the 
leading edge and the trailing shock for a $(x)  such as gives figure 11 is asymp- 
totically [w(ue) - w(ZI2)] t ,  with w(u) given by (2.36). 

I I I I I ' r x  
x d l  x+v(ue )  x d l  x+ 0 ( u 3  t 

t = O  t > l t ,  t> t , 7  It, 

FIGURE 11. Typical solution with one shock where t ,  is the time 
to reach the steady shock state. 

2.8. Discussion of results, experimental relevance and a simpli$ed 
model for the Gunn effect 

The above phenomenological temperature independent model is primarily based 
on the assumption of a two-conduction band structure for the doped semi- 
conductor. The above analysis is crucially dependent on the fact that there is 
a negative resistance region and that it is limited in extent with the ion velocity 
w(E) having a relative minimum at E, (see figures 3, 4 and 7). By considering a 
long sample, and so J ( t )  can be taken as constant, the governing non-dimensional 
equation in one space variable is a non-linear second-order parabolic equation in 
which, for most practical situations, a small parameter E ,  directly connected with 
the diffusion multiplies the highest derivative. The reduced, e = 0, equation is 
a perturbed conservation equation which is a first-order non-linear wave equa- 
tion, for which wave-like solutions cannot propagate without change in shape. 
Since the effect of 6 is to change the magnitude of the electric field by terms 
O ( E )  this reduced equation should suffice for comparison with experiment. This 
change is still O(s)  when shocks are present: the role of E in this case is simply to 
smooth out the shocks over a distance O(E) .  

With the typical w(E)-E curves which with exceptions noted above seem to 
have been widely accepted two shocks, or steep regions, in the electric field can 
appear in the solution when 8 = 0 even if the initial wave satisfies the physical 
restriction on the maximum allowable negative slope of the electric field 
(ZL, 2 - 1/A) .  (This ensures that the number density does not become negative.) 
It was shown in 3 2.7 for a particular case, although it holds generally, that if h 
is sufficiently large the second shock at  xd2 will not exist resulting in a typical 
wave shape similar to that in figure 11. It should be mentioned at  this stage that 
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if a shock at xd2 does appear in the solution the singular perturbation solution 
cannot smooth it out sufficiently to accommodate the restriction u, > - l /h.  In  
the vicinity of the shock it makes u, = O( - l/s) .g - l/h for s < 1 and h = O( 1) 
or h < 1. In  the high conductivity case the effect of ehD,(u) in (2.19) could, of 
course, substantially alter the situation as to a shock at  xd2 but for constant D(u) 
or slowly varying D(u) it certainly could not, We must thus consider the solutions 
of the reduced equation (2.21) to be those which have to  be used for experimental 
comparison : a singular perturbation analysis is unnecessary. 

The role of #(x) is very important. That such a wave appears in the sample at 
all is interesting. It is probably a property of the external circuit. Alternatively 
(if not the actual cause then perhaps a contribution to it) the appearance could 
be the result of a basic instability for which there is a preferred wavelength which 
grows at  the expense of the energy from neighbouring disturbance waves. In this 
situation a #(x) would be obtained which would not violate the physical restric- 
tion on the negative slope. Here there would be the question of why the wave 
grew only at  one end. 

Given $(x) the solution depends crucially on whether or not max$(x) > u, 
or is sufficiently close to it, or the sample is long enough, so that u > u, for some 
t > 0. If u > u, for some t > 0 or if #(x) > u, for some x we have the possibility 
of two shocks appearing. Even if the time 2tc is sufficiently large that the second 
shock would not appear with typical experimental times the typical shape of 
the solution in figure 11 is not what is observed experimentally (see Gunn 1967). 
The experimental curves tend to have a steep region equivalent to a smoothed 
shock at zdl, in which u12 is effectively the maximum u in the solution, and the 
region x > xdl is monotonically decreasing as in figure 12. The broken line curves 
in figure 12 for t t, are fairly typical experimental shapes. 

We have seen that the possible appearance of the shock at  xd2 and the shape of 
the wave for x > xdl, as in figure 11, are a direct consequence of the existence of 
a limit to the negative resistance region, assuming $(x) to have a maximum close 
enough to uv so that u > u, for some t 2 0. It is now suggested in view of the 
above analysis and the observed experimental results, as to shape, that for all 
situations of practical interest the effective v(E)-E curve is one in which the 
negative resistance region for E > Em is to all intents and purposes unlimited, 
ThisisinkeepingwithButcher (1967) andButcher & Pawcett (1966) (see figure 2). 
In this case h[w(u)-v(u,)] < 0 in (2.21) for all u > u, in the range of interest. 
From $2.4 this implies that only one shock at xdl will appear at a time given by 

Further, only the f i s t  of (2.29) will be required and from the last of (2.25) all 
parts of the wave in which u > ue will grow without limit. The magnitude will 
be determined by the sample length (and h and w(u), of course). 

By way of illustration we choose v(u) from (2.36) as 

} (2.45) 
~ ( w )  = , U ~ U  (0 < < U m )  

= ( P ~ + P ~ ) u ~ - P ~ u ,  urn < ( ~ 1 + ~ 3 ) ~ r n / ~ 3 ,  

with the upper limit on u in (2.45) ensuring that w(u) > 0. A curve in which 
w(u) > 0, v,(u) -= 0 for u > urn will suffice theoretically. The shock will form at 
given by (2.40) and its speed of propagation, position and strength are then given 
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by the first of (2.29) with (2.30) for ull and a similar set for u12. With (2.45) 
these give (using (2.39)) 

(2.46) 
xdl= xo+v(~e)t+(' /h)  [q5(xo(xd-))-u111, 
x d l =  x o + v ( u e ) t +  (l /h) [$(xo(x,+ ))-u121, 

ul1 = ue( 1 - e A p 3 t )  + c)(xo) eApst ,  

u12 = ue( 1 - e h p 3 t )  + q5(xo) e h ~ 3 ~ .  

for t > 

where the physical condition from (2.20), namely uJz, t )  2 - l /h  requires a 
For t < 

For a given q5(xo), (2.46) can be solved. 
As an example, consider the initial wave q5(xo) to be as in (2.43) (see figure 12) 

A. 
= (l/hp3)log (1 +ah) from (2.40) we have, from (2.26) using (2.45), 

0 < xo 6 +x, 
(2.47) 

x = v(u,) t+ (l/h) (u-u,) [(l +ah) e-hpat - 11, 

u = u, + (x,/a) e h p s t ,  

x = X + v ( u , ) t + ( l / h ) ( ~ - u ~ ) [ ( 1 - a h ) e - ~ ~ ~ t - 1 ] ,  
u = u, + [ ( X  - xO)/a] ehp3t .  

The wave form thus consists at  any given t of two straight lines the leading 
part of which is flattening while the trailing part steepens. At t = Itc the shock 
at x = xdl has formed and, as shown in figure 12, a t  its inception, has ull($J = u, 
and from (2.47) with xo = gX and t = = (l/p3)log (1 +ah), 

ul&) = u, + gx/a + 4 X h  = u(+X, 0) + +Xh. (2.48) 

For t > we use (2.46) with ull(t) = u, for all t > Itc. We thus have only the 
first, third and fXth of (2.46), with the appropriate q5(xo) given by the last of 
(2.47). The shock problem with these reduces to 

(2.49) 1 !?@ = v(ue) - &P3(U12 - u,), 
at 

xdl = X, + ~(u , )  t - (u12 - u,) (l/h) [(ah - 1) e--hp3t + 11, 

which have to be solved subject to 

(2.50) 

Differentiating the second of (2.49) and using the first of (2.49) an equation for 
u12(t) is obtained, the solution of which is simply found to be 

u12(t) = ue+X(4h)tehp8t[eAp3t+ah- 11-4, (2.51) 

which on substitution into the second of (2.49) gives 

xdl(t)  = X + w(u,) t - [X/(2ah)4] [ehPst + ah - 114. (2.52) 
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For x > xdl the solution for u is, for any given t ,  a straight line and is given by the 
third of (2.47). Clearly these solutions for v(u) as in (2.45) cannot hold for all 
time since all u( > u,) + co and so v(u) + 0 for some finite time. With the typical 
values for the constant parameter in (2.47) from $2.7 and h = O(1) times large 
compared with the time of passage across a typical sample are still allowable in 
(2.51) and (2.52) which can thus be used for comparison. The solution is illustrated 
in figure 12. If one compares this solution with the experimental curves in, for 
example, Gunn (1967) the similarity is very marked. The role of the singular 
perturbation e diffusion term will be to smooth out the discontinuities as indicated 
by the dashed lines in figure 12. 

FIGURE 12. Theoretical solution for simplified model (see $2.8) which is similar to the 
experimentally observed wave motion. Broken line indicates the effect of diffusion in its 
role as a singular perturbation. 

The width of the wave W ( t )  for t < It, is simply X and for t > t, is given by 

W ( t )  = x + V(UJ t - x&) 
= [ X / (  2ah)B] [ehpat + ah - 119. (2.53) 

The excess voltage V(t )  from (2.35) is given simply by the area under the wave and 
bounded below by u = u,. Since u as a function of x for xdl < x d X + v(u,) t is 
simply a straight line, V(t )  is the area of the triangular wave and so, using (2.51) 
and (2.52) 

= i ( X z / a )  e+st. (2.54) 

If we consider the number density then from (2.20) the accumulation layer 
(n > no) simply becomes more of a spike while the depletion (n < no) layer be- 
comes wider. 

In conclusion then it is suggested that a realistic model is simply that in which 
v(u) is taken to be a monotonic decreasing function of u for u > u,. The crucial 
parameters ar0 thus h and p3,  the magnitude of Iw,(w)l for u > u,. Equation 
(2.21) is then very simply solved under any realistic conditions. Of practical 
importance is the magnitude and rate of growth of the maximum u: these are 
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given immediately by (2.51) for a piece-wise linear w(u). For comparison with 
experiment in which the sample length is finite the solution (2.51) may be used 
for times up to l/v(@,J. 

There are clearly other problems of practical interest even with this simple 
monotonic model which could be considered. Of most importance, perhaps, are 
studies of the effect of finite length and a non-constant diffusion coefficient. 

Other bulk effect phenomena in semiconductors, such as when part of the 
carrier density gets trapped at impurity sites (known as ‘trapping ’) also give 
rise to similar non-linear wave equations: Ridley & Wisbey (1967), for example, 
discuss some aspects of this. Sze (1969) discusses other such phenomena. 

It is a pleasure and a privilege to contribute this paper to an anniversary 
volume for Sydney Golstein with whom I had the good fortune to work for 
several years. His continual encouragement, insight and influence as a mathema- 
tician and kindness as a friend have been for me an enriching and delightful 
experience. 
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